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Abstract

A review of two methods for the design of wa-
verider configurations with more general shock geome-
tries is presented. In the first method the osculat-
ing cones approach is used to rapidly determine wa-
veriders for constant strength shocks assuming a piece-
wise conical flowfield, solving the Taylor-Maccoll equa-
tion to define the post-shock flowfield. In the second
method, a shock with varying curvature and strength
is specified, and a cross-stream marching scheme is
used to compute the post-shock flowfield by solving the
Euler equations. The three-dimensional cross-stream
marching problem is ill-posed, but stability is achieved
through the proper choice of marching directions. Un-
like most previous studies, both of these methods allow
for the use of non-axisymmetric shock topologies. Sev-
eral waveriders, and the flowfields about them, gener-
ated by these new methods instantaneously on desktop
computers are compared to the flowfields computed us-
ing a conventional three-dimensional Euler solver, re-
quiring the construction of a computational grid and
about an hour of supercomputer time.

Nomenclature

L/D = lift divided by drag
Moo = freestream Mach number
p = pressure

U, V, W = Contravariant velocity components

u,v,w = Cartesian velocity components

xz,y,z = Cartesian coordinates

~ = ratio of specific heats

0. = cone angle

0 = shock angle

Osym = symmetry-plane shock angle

0 = wedge angle

p = density

¢ = streamwise computational coordinate
n = circumferential computational coordinate
¢ = radial computational coordinate
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Introduction

This paper is a review of two waverider design
methods developed as thesis projects under the guid-
ance of Professor A. Richard Seebass and his longtime
colleague Helmut Sobieczky. The first, the osculating-
cones method, treats an arbitrary constant strength
shock as piecewise conical, and uses the Taylor-Maccoll
equation to predict the post-shock flowfield. The sec-
ond, the cross-stream marching method, computes the
flowfield behind a general shock shape by marching the
Euler equations away from the shock. The methods
are described in great detail in Refs. 1 and 2, respec-
tively, and in a more general format in Refs. 3 and 4,
respectively.

During the 1980’s and 1990’s there was much in-
terest in the development of high-speed aircraft, such
as the National AeroSpace Plane (NASP), the High-
Speed Civil Transport (HSCT) and the German Sanger,
to name just a few. In the search for efficient vehicle
designs, an old concept, the waverider, received signif-
icant attention and became the focus of many research
projects, at both the university and national level.

Waveriders were first conceptualized in 1959 by
Nonweiler as reentry vehicles for manned space flight.?
Classically defined in inviscid supersonic flow, they
generated shock waves that were attached to their sharp
leading edges in such a way that the vehicles appeared
to ride on the shock waves, hence the name waverider.

Waveriders were designed using an inverse method-
ology, carving the lifting surface from a known flowfield
by tracing streamlines downstream from a prescribed
leading edge which lay on the shock surface. In Non-
weiler’s case the known flowfield was merely the two-
dimensional flow over a wedge, and the leading edge
was an inverted V or caret, as illustrated in Fig. 1. A
freestream upper surface was assumed, providing in-
ternal volume for the configuration. The post-shock
pressure acting on the lower surface was greater than
the freestream pressure acting on the upper surface
yielding a net lift. A similar approach was used in
1963 by Jones® to generate waveriders from the flow-
fields about axisymmetric cones at zero incidence, as
illustrated in Fig. 2.



In the following years many researchers (Eggers
et al.” provides a nice summary) developed variations
to this design approach with the primary difference
being the choice of the flowfield from which the wa-
verider was carved. In most past studies geometrically
simple shock shapes such as planes or axisymmetric
surfaces were chosen because exact or relatively sim-
ple approximate solutions for the post-shock flowfields
were known.

Historically, waveriders were thought to be su-
perior to other designs due to the isolation of the up-
per and lower surface pressures by the attached shock
wave. However, if the waverider was flown at off-
design conditions, or if viscous flow and blunt lead-
ing edges were considered, the shock would not be
attached to the leading edge, and the performance
should suffer. While experiments by Bauer et al.® and
McDonnell Douglas® found waveriders to be competi-
tive with other designs, they did not indicate a defini-
tive performance advantage over other configurations.

On the other hand, waveriders, or more precisely,
the inverse design techniques, offer a number of ad-
vantages for the design of high-speed aircraft. If the
shock is assumed to be attached then the upper and
lower surfaces may be designed independently, with
the lower surface defined to generate the attached shock,
and the upper surface to fulfill performance and inter-
nal volume constraints. Additionally, with some engi-
neering knowledge, a shock and flowfield may be spec-
ified based on other design constraints, like engine size
and location and inlet flow quality, and the forebody
shape needed to generate the desired shock and post-
shock flowfield can be inversely determined.

At that time, virtually all previous waverider de-
sign studies were limited to planar or axisymmetric
flowfields; therefore, the forebody and inlet designs
of full configurations were severely limited. The two
methods reviewed here were developed to expand the
design envelope to include much more generalized shock
geometries, providing a vehicle designer with more con-
trol over the integrated vehicle design.

In the sections below, the two methods are sum-
marized, with results from each compared to direct
Euler simulations of the resultant waverider forebod-
ies. In addition, a few examples are given of appli-
cations of the methods during the years since their
original presentation.

Approach

The theory and numerical procedures used for
the two methods are briefly described in the sections
below. Both methods were first proposed by Sobieczky
et al.'® with further details given in Refs. 1-4, 11-12.

Fig. 2: Waverider derived from a conical flowfield.

Osculating Cones Method

The method of osculating cones is a strip-theory
approach of sorts, where the flow between the shock
and the lower surface is approximated by a finite num-
ber of thin strips which are aligned with the freestream
flow and are locally normal to the shock surface. The
flow is assumed to be conical within each of these
strips. All of the strips have the same shock angle,
B, and hence the same shock strength, but each strip
has a local cone radius, determined by the local shock
curvature. The method provides a very efficient means
for generating waverider lower surfaces for a prescribed
shock-shape and flow capture tube (FCT). The as-
sumption of locally conical flow implies that the flow is
everywhere tangent to these planes; hence, they can be
thought of as osculating planes (OP). The waverider
lower surface within each strip is defined by integrat-
ing a streamline downstream from the intersection of
the shock surface and the FCT.

It is somewhat simpler to visualize the concept
if we exclude the axial (streamwise) coordinate direc-



tion and simply look at the base plane, where the shock
profile is actually defined. A waverider designed from
a right circular conical shock will have local cone axes
located at a common point in the plane of the config-
uration centerline (see Fig. 3a). If an arbitrary base-
plane shock profile is specified, the local cone radii at
each station along the arclength of the shock profile
will have both a unique radius, due to local shock cur-
vature, and a unique axis location, as illustrated in
Fig. 3b. The dashed line in both figures is the pre-
scribed base-plane shock profile, and the dotted lines
represent the local OP, connecting the shock with the
local cone center represented by the diamonds.

Lower Surface Design Generation of the lower sur-
face of an osculating cones waverider requires the spec-
ification of a surprisingly compact set of parameters.
Ambient flow conditions, namely freestream Mach num-
ber, the ratio of specific heats, and the desired shock
angle, are supplemented by a user-defined base-plane
shock profile and a leading edge shape to generate the
lower surface of the vehicle.

The cross-sectional shape of the shock in the base
plane is controlled by two analytic functions called
keys. Each key is composed of an analytic function or
a segmented combination of analytic functions that re-
turn a dependent value given a normalized input value.
In the case of the lower surface, these keys define the
spanwise and vertical coordinates of the shock surface
at the base plane.

The resulting curve is referred to as the Inlet
Capture Curve (ICC) (the solid bold line in Fig. 4a)
because it can be specified as a governing geometric
parameter for the generation of a waverider lower sur-
face that produces a shock with a base-plane profile
that specifically impinges upon an engine inlet lip. A
third key controls the inwardly directed normal dis-
tance at each station along the ICC, defining the y, z
coordinates of the FCT, which is really the streamwise
projection of the leading edge. If these points are pro-
jected forward in the freestream direction, they will in-
tersect the shock surface at some axial location, defin-
ing the x-coordinate of the leading edge within their
respective conical regions, as illustrated in Fig. 4b.

The solution of the Taylor-Maccoll equation pro-
vides all flow variables as functions of a single depen-
dent variable, the azimuthal angle. Therefore, only a
single one-dimensional integration is required to de-
fine the conical flowfield. Additionally, all streamlines
through the conical flow are self-similar, so only a sin-
gle streamline needs to be determined, and this one
streamline is then scaled appropriately in each OP to
define the lower surface from the leading edge to the
base plane, as illustrated in Fig. 4c.
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Fig. 4: Schematic of lower surface definition procedure.

Solution of the Taylor-Maccoll equation gives all
flow variables as functions of the azimuthal angle; there-
fore, only this angle is needed to determine the flow
properties in the region between the shock and the
lower surface. Determination of the lower surface con-
tributions to aerodynamic performance is then a sim-
ple matter of integrating these values over the lower
surface computational mesh to obtain the reduced in-
viscid quantities of Cr, C'p and Cyy.

Upper Surface Design While the lower surface ge-
ometry of the waverider is very tightly constrained by
the need to maintain a continuous, attached, constant



strength shock, the upper surface leaves more to the
discretion of the designer. Design of the upper surface
requires consideration of two delicately balanced fac-
tors; maximum enhancement of the lift-to-drag ratio
through the introduction of an expansion surface, and
thoughtful allocation of the internal volume distribu-
tion to meet the packaging requirements of a practical
flight application.

The shape of the upper surface is governed by
two keys. The first key controls the inward deviation
of the upper surface from the FCT as a function of
axial location. By applying this key between the lead-
ing and trailing edges in a series of spanwise planes,
the streamwise character of the upper surface can be
controlled with a great deal of flexibility. In this way,
complex hybrid surfaces comprised of expansion, com-
pression, and freestream regions in any combination
are easily defined. In much the same fashion, the sec-
ond key is applied to scale the effect of the first key
based on normalized spanwise coordinate, so that the
closure of the upper surface upon the lower surface be-
tween the symmetry plane and the leading edge at the
base plane can be controlled.

Determination of the primitive flow variables on
the upper surface requires application of an accurate
yet rapid computational analysis. This is accomplished
through the application of a first-order scheme utiliz-
ing the axisymmetric method of characteristics. Once
the upper surface has been defined, a family of ap-
proximate streamline-oriented marching lines must be
generated to serve as the domain for application of the
characteristic method. Locations are defined along the
leading edge to serve as starting points. For each suc-
cessive axial station, the y and z coordinates are deter-
mined by finding the the intersection of the streamwise
projected upper surface with the normal of the previ-
ous projection. A single marching line generated us-
ing the existing upper surface geometry can be consid-
ered to be an axisymmetric cylinder with a radius that
varies as a function of streamwise coordinate, as illus-
trated in Fig. 5. There is one marching line for each
point on the defined leading edge of the waverider.

These coordinates, along with local values of ef-
fective cylindrical radius and streamwise turning an-
gle are computed and stored for each axial location.
Flow properties along the length of each marching
line are obtained through application of the compat-
ibility equation form of the axisymmetric method of
characteristics.1® Using freestream velocity as the start-
ing condition, subsequent downstream primitive values
are obtained by using the local values of effective ra-
dius, streamwise turning angle, and axial displacement
in the compatibility equations with first-order march-
ing techniques.
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Fig. 5: Schematic of the expansion surface characteristic solver.

Once the flow variables have been obtained along
all marching lines, the values are redistributed onto the
original surface grid. Finally, as for the lower surface,
the aerodynamic coefficient contributions from the up-
per surface may be calculated and combined with the
lower surface values to yield the complete inviscid con-
figuration performance values.

Viscous Effects Viscous effects play a large role in
the performance of high-speed aircraft. They cause a
loss in overall performance both through a substantial
increase in drag coefficient and, to a lesser degree, a
reduction in the lift coefficient. These losses are the
result of boundary layer development along the length
of the vehicle, the presence of which displaces the pres-
sure field and leads to the addition of a skin-friction
component to the drag.

The boundary layer codes applied in the analy-
sis of both the upper and lower surfaces are derived
from two-dimensional theory. Losses in accuracy from
this assumption are presumed slight. Viscous effects
for the waverider upper surface are computed using the
streamline-oriented marching lines implemented in the
upper surface pressure solution method. On the lower
surface the calculations are performed along surface
pseudo-streamlines within each osculating plane. Vis-
cous analysis may only be performed after an inviscid
surface solution has been obtained for the configura-
tion and data for (p, p, T, M, and u) is known on the
upper and lower surface pseudo-streamlines.

The analysis of the boundary layer is a three-part
problem. To compute the viscous surface contribution
for a full-scale aircraft, laminar, transitional, and tur-
bulent computations must be performed to provide an



adequate representation of the boundary layer. The
methods employed are from Whitel* as per Ref. 15.
The significant difference is that the numerical ap-
proaches taken have been significantly streamlined and
simplified to the point that over an order of magnitude
savings in processing time is achieved.!

If certain flight conditions are specified, the ef-
fects of viscous interaction must also be considered.
In the analysis it is assumed that there is an infinitely
sharp leading edge separating the flow conditions on
the upper surface from those of the lower. Under re-
alistic hypersonic flow conditions there is a significant
degree of interaction between the flow near the leading
edge and the boundary layer. The effect of this interac-
tion is an induced pressure in the local freestream flow
by the growth of the boundary layer in the proximity of
the leading edge. This pressure increase subsequently
effects the character of the boundary layer and the re-
sulting skin friction coefficient. The majority of the
effect is felt only very close to the leading edge, but
the pressure increase is retained downstream. For the
waveriders investigated in this study, the parameter
X, which measures the degree of viscous interaction,
is much less than 1 for all locations downstream of
the laminar regime. Hence the majority of viscous in-
teraction effects are captured by applying a Reynolds
analogy approximation to pressure and skin friction
coefficient in the laminar regime.14

Graphical User Interface (GUI)  The Waverider In-
teractive Parameter Adjustment Routine (WIPAR),
developed by Center,! is an interactive design tool
based on the method of osculating cones. The user
functionality provided by the interface facilitates the
rapid creation, modification, and optimization of wa-
veriders in a real-time software environment. WIPAR
was originally developed on the Silicon Graphics fam-
ily of graphics workstations. The underlying code is
written in FORTRAN and makes use of graphics li-
brary calls to provide the user interface functionality.
In the years since it was originally developed, the util-
ity has been ported to run on a variety of platforms.
Even when run on platforms with limited processing
resources, the efficient underlying methodology pro-
vides geometry generation and viscous surface pressure
calculations on the order of seconds, providing instan-
taneous insight to the on-design aerodynamic charac-
teristics of waveriders.

A screen snapshot of the WIPAR lower surface
generating curve environment is shown in Fig. 6. Al-
terations of the flow conditions and geometric param-
eters that comprise the waverider are quickly made
using graphical sliders, buttons, interactive graph el-
ement picking, and mouse functionality, allowing the

user to investigate the parameter space with the guid-
ance of accumulated insight into the effects of each
parameter on the performance of the vehicle.

A manual optimization procedure is available in
WIPAR, where the user selects two design variables to
explore, and an objective function is computed for a
range of the two variables, and displayed graphically as
a carpet plot. The objective function can be any one
of about twenty geometric or aerodynamic values or a
user defined weighted average of those values. A screen
snapshot of the optimization environment is shown in
Fig. 7.

The capabilities provided by the WIPAR design
environment allow an investigator to develop and exer-
cise a considerable degree of personal expertise in the
waverider design process, thus introducing the element
of logical human intervention. In this regard, WIPAR
serves as a platform for the creation of practical wa-
veriders that are ideally suited for specific missions.
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Cross-Stream Marching Method

The theory leading to the development of the in-
verse, cross-stream marching algorithm for the Euler
equations was first given in Sobieczky et al.l© and in
greater detail in Jones,? with the general methodology
and a few details summarized here. The primary steps
of the marching procedure are illustrated in Fig. 8.
The shock geometry is first defined, and a surface mesh
is generated, as shown in Fig. 8a. The post-shock flow
conditions are determined using the Rankine-Hugoniot
jump relations, as shown in Fig. 8b. The optimum
marching directions are computed, and a new grid
layer is generated, as shown in Fig. 8c. Finally, the
solution is computed on the new grid layer. The last
two steps are repeated iteratively to define the flow in
a domain, bounded on the upstream and downstream
end by characteristics, as shown in Fig. 8d. When the
marching is complete, the waverider lower surface is
defined by tracing streamlines through the computed
flowfield, as shown in Figs. 8¢ and 8f. While the wa-
verider is cut from the flowfield upstream of the base
plane, the flow region downstream of the base plane
is required to provide needed boundary conditions for
the marching scheme. The weaker the shock strength
is, the further downstream the prescribed shock must
extend to provide the needed initial conditions.
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Posedness The virtue of such an inverse scheme is
that no knowledge of a generating body is needed to
define the flowfield behind a given shock. However,
this is also the origin of the problem’s ill-posedness.

For a mathematical problem to be well-posed, a
solution must exist, be unique and be stable. While
the questions of existence and uniqueness are rarely
considered for problems such as this, since the gov-
erning equations are derived from fundamental laws of
mechanics, the question of stability—or, more aptly,
the continuous dependence of the solution on initial
data—is a valid concern. In other words, do small
changes in the initial data result in small changes in the
solution, or do they cause large or unbounded changes
in the solution?

In three-dimensional flow, the shape of the re-
sulting shock is, in general, quite insensitive to lo-
cal changes in the body’s shape or, inversely, small
changes in the shock shape may require large changes
in the body shape or, worse yet, may preclude the ex-
istence of a solution altogether, thereby violating the
stability condition for a well-posed problem. It is en-
tirely possible to specify a shock shape for which no
solution exists without the inclusion of flow features
not allowed here, such as embedded shocks.

The basic principles of the ill-posedness are illus-
trated by considering the simple linear model equation:

¢xx - ¢yy - ¢zz =0. (1)

Equation (1) is a linear, hyperbolic equation in three
independent variables with z as the time-like (or flow)
direction. A solution can be constructed by an infinite
series of modal components of the form

¢ = expli(kiz + kay + k3z)] (2)

where i = /—1 and kq, ks, and ks are the wavenum-
bers in the respective z, y, and z coordinate direc-
tions. To march in the usual time-like direction, the
wavenumber ki must be determined. Differentiating
Eq. (2) and substituting the results into Eq. (1), one

obtains
klzi\/kg—Fk%, (3)

such that for all real ks and ks, kq is real-valued, and
¢ is bounded for all x.

However, marching in a cross-stream direction
implies marching in a direction different from the time-
like direction—the z-direction in this case. The rela-

ks = +1/k2 — k2 (4)

is formed for k3 as a function of k; and k,. It can be
seen that for |ka| > |k1|, k3 is imaginary valued, and

tion

¢ is unbounded as z — co. Hence, this simple, three-
dimensional, cross-stream marching procedure is ill-
posed, that is, the solution is not continuously depen-
dent on the initial data, unless constraints are placed
on the initial data, namely, |ka| < |k1].

Consider now a similar two-dimensional problem
with the governing equation

¢1:1: - ¢zz =0, (5)
with modal components of the form
¢ = expli(k1z + k3z)] . (6)

To march in the z-direction, the wavenumber k3 must
be determined. It is given by the relation

ks = £y/k3 . (7)

Hence, for all real kq, k3 is real-valued, and ¢ remains
bounded for all z.

In summary, the three-dimensional problem gov-
erned by Eq. (1) is only well-posed if constraints are
placed on the initial data, but the two-dimensional
problem governed by Eq. (5) is well-posed for all ini-
tial data. While the full system of governing equations
is obviously much more complex than the simple model
equations shown above, stability may still be improved
by transforming the general three-dimensional system
into an appropriate coordinate system where the prob-
lem is essentially two-dimensional.

Osculating Plane In a general, three-dimensional
flowfield, the plane within which the flow is locally two-
dimensional is called the osculating plane (OP). Both
the velocity and acceleration vectors are contained in
the OP, thus there is no pressure gradient normal to
the OP. By transforming the system of governing equa-
tions into a curvilinear coordinate system where one
family of isosurfaces is everywhere tangent to the OP,
the system becomes locally a two-dimensional one in
much the same way that an axisymmetric flowfield can
be treated as locally two-dimensional.

Governing Equations  The five equations governing
the flow are the conservation of mass, the conservation
of momentum, and the conservation of entropy along
streamlines, given in vector notation by

E, + F, + Gq. = 0 (8)
where
u p 0 0 0
0 pu 0 0 1
E = 0 0 pu 0 1], (9)
0 0 0 pu 1
—upy 0 0 0 pu



v 0 p 0 0
0 pv 0 0 1
F= 0 0 pv 0 1], (10)
0 0 0 pv 1
—vpy 0 0 0 pov
w 0 0 p 0
0 pw 0 0 1
G= 0 0 pw 0 1|, (11)
0 0 0 pw 1
—wpy 0 0 0 pw
and
7=[p v v w p]. (12)

The subscripts denote partial derivatives. The use of
the entropy equation in place of the energy equation is
valid for the inviscid, adiabatic flows considered here.
The substitution of p/p” in place of the entropy is valid
for calorically perfect gases. The entropy equation is
used because it lessens the coupling between the sys-
tem of equations.

Equations (8-12) are nondimensionalized using
p = p/poc, U = uftee, ¥ = v/ae, W = w/as and
P = p/(pscy). When these relations are substituted
into Eq. (8) the system remains unchanged in form.
For simplicity the tildes are dropped throughout the
remainder of the development.

The equations are transformed into a generalized
coordinate system where ¢ = (2, y, 2), n = n(z, y, 2),
and ¢ = {(z,y, z). Expanding the partial derivatives
using the chain rule, one obtains

Eg; + Fg, + G, =0 (13)
where
U ple p&y pE: 0
R 0 pU 0 0 &
E = 0 0 pU 0 & |, (14)
0 0 0 pU ¢,
—Upy 0 0 0 pU
Vi e pny pm: 0
. 0 pV 0 0
F= 0 0 pv 0 ny |, (15)
0 0 0 pvV n,
—Vpy 0 0 0 pV
and

w P PGy PG 0
0 pWw 0 0 (x
G=| o0 0 pW 0 ¢ |- (16)
0 0 0 pW ¢
—Wpy 0 0 0 pW
Here U, V, and W are the contravariant velocities and
&y ys &2y Moy Mys M2y Coy Gy, and (; are the inverse
metrics.

As stated in the previous sections, marching in
the OP minimizes the effects of the problem’s ill-posed-
ness. Within the OP the contravariant velocity V is
by definition exactly zero. Setting V = 0 in Eq. (15),
one obtains

EG +F°G, + G =0 (17)

where

0 0 0 7
My | - (18)
0 0 0 n
0 0 0 0

This is the system of equations that is used to describe
the flowfield between the shock and the waverider’s
lower surface.
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Grid Generation Grid generation is an integral part
of the solution procedure, as the grid must be aligned
with the local osculating plane. The marching direc-
tions are determined by setting V = 0 and march-
ing normal to the current ¢ grid line. Marching dis-
tances are determined using a two-dimensional method
of characteristics philosophy.

Marching On the shock surface and at each of the
new grid planes determined by the marching proce-
dure the partial derivatives of the primitive variables
with respect to & and 5 are computed using finite dif-
ferences. Remaining are five equations and five un-
knowns: the five partial derivatives with respect to (.
To solve for the ( partial derivatives, the system is
inverted, yielding

¢ = —G7'[Ed; + F ;] - (19)

Because of the sparseness of matrix G, this inversion
step is easily performed. The ¢ and 7 gradients are
computed using second-order, central differences, and
the solution is advanced to a new grid plane by replac-
ing the ¢ partial derivatives in Eq. (19) by second-order
central differences as well.

Boundary Conditions The flowfields considered here
are symmetric about y = 0, with the flow aligned in
the positive x direction, and with the shock surface



the { = 1 boundary. The central differenced marching
step cannot be used there since no data is known at a
previous step, consequently, first-order, one-sided dif-
ferences are applied. Since marching is performed in
the ¢ direction, boundary conditions are not needed at
an upper limit. The = 1 boundary is the symmetry
plane, and a second-order, central differencing, sym-
metry condition is applied there. The upper limit of
71 is handled with second-order, one-sided differences.
Data here is of minimal importance, as they generally
lie outside the domain of interest for the waveriders.
The boundaries at £ = 1 and { = {4 are some-
what more complicated. Based on a two-dimensional
method of characteristics philosophy, each new ( grid
plane is reduced by one point at each of these bound-
aries, so that second-order, central differences can be
used to impose explicit boundary conditions without
introducing instabilities to the solution. Therefore,
each marched grid plane is smaller by two rows from
the previous layer.

Lower Surface Definition To define the lower sur-
face, streamlines are integrated downstream from a
prescribed leading edge to the base plane. The lead-
ing edge, which lies on the shock surface, is defined by
a two-dimensional arc representing either the stream-
wise or vertical projection, thereby defining either the
FCT or the planform, respectively. The two-dimen-
sional arc is mapped onto the shock surface using the
algebraic expression defining the shock shape.

Streamline integration is performed in the com-
putational domain for simplicity. Recall that by march-
ing in the osculating plane, the contravariant velocity
V is everywhere zero, thus the integration in compu-
tational space need only be two-dimensional. Addi-
tionally, the computational grid is uniform with unit
cells, further simplifying the computation. Integration
is done using the fourth-order Runge-Kutta method.
The streamline coordinates in the computational do-
main, (€,7n,(), are then transformed into physical
(Cartesian) space. All of the streamlines are combined
to define the waverider’s lower surface, as shown pre-
viously in Fig. 8f.

Note, while the present implementation integrates
the streamlines from a prescribed leading edge down-
stream to the base plane, the integration could easily
be reversed, integrating the streamlines forward from
a prescribed lower-surface shape on the base plane to
the shock surface. The intersection of the streamlines
with the shock would inversely define the leading edge
shape. This approach would be useful if the method
were used to compute the forebody ahead of a known
inlet topology.

Upper Surface Definition The upper surface ge-
ometry is up to the discretion of the designer. An op-
tion is available to generate expansion upper surfaces
to enhance the overall vehicle performance. Expan-
sion surfaces are created by first defining a freestream
upper surface, and then applying a weighted average
between the freestream surface and the lower surface.
This averaging approach provides a flexible design
method for generating open, partially closed, or closed
trailing edges.

The flow parameters on the upper surface are
predicted using an approximation to the axisymmetric
method of characteristics. The first-order approach,
developed by Center,! is robust, extremely fast and
sufficiently accurate.

Performance Evaluation The lift and drag of the
waveriders is computed by integrating the pressure
forces over the surface of the waverider. The freestream
pressure is subtracted from the local pressures so that
pressure contributions on the upper and lower surfaces
may be evaluated individually, and any contribution
caused by a finite base area is removed. Nondimen-
sional lift and drag coefficients are computed using the
symmetry plane chord length as a reference length and
the integrated planform area as the reference area.

Results

Extensive validation of both methods are pre-
sented in the cited references, including comparisons
with theory, each other and direct numerical simula-
tions of the resultant waverider configurations. De-
tails of the methods used for the direct simulations can
be found in Jones and Dougherty.'® The approach is
briefly summarized here. Computational grids about
the waveriders are formed using a transfinite interpo-
lation grid generator. The grids are modified during
the solution procedure using a spline-fitting, solution-
based grid adaption scheme, and solutions are pro-
duced using the F3D Euler solver.?

Osculating Cones Method

In Fig. 9 the prescribed base-plane shock shape
for five cases are compared to the pressure isolines
computed by the direct solver, with the prescribed
shock shown on the left, and the computed isolines
shown on the right. One unavoidable consequence of
the method of osculating cones approximation is that
adjacent regions with different shock curvatures result
in mismatched conditions that induce cross-flow ve-
locities. The direct simulations, however, yielded no
discernible displacement of the calculated shock sur-
face from the design shock surface.



Fig. 9a: Case 1—conical shock.

Fig. 9b: Case 2—wedge center, conical outer.

Fig. 9c: Case 3—conical inner, wedge outer.

Fig. 9d: Case 4 —non-conical shock.

Fig. 9e: Case 5—non-conical shock.

The normalized surface pressure for the configu-
ration shown in Fig. 10 at a cross-section 90 percent
downstream from the nose and on the symmetry plane
are shown in Figs. 11a and 11b, respectively, with com-
parisons between WIPAR and the direct solver.
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Fig. 10: Case 6—perspective view of the surface geometry.
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Fig. 11a: Case 6—sectional normalized surface pressure.
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Fig. 11b: Case 6—symmetry-plane normalized surface pressure.

Pressure contours predicted by WIPAR, and the
direct solver are compared for two waverider topologies
in Fig. 12, where the WIPAR results are shown on the
right half plane of each configuration and with the F3D
results on the left half plane.
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Fig. 12: Upper surface pressure contours.

Both configurations have upper surface topogra-
phies with relatively complicated combinations of span-
wise curvature and axial compression/expansion char-

acteristics. The agreement, both qualitatively and quan-

titatively, is impressive when it is considered that the
design-process computations are made within a frac-
tion of a second on a desktop computer.

Cross-Stream Marching Method

Validation of the cross-stream marching method,
SCIEMAP (Supersonic Cross-stream Inverse Euler
Marching Program), can be found in Ref. 2 where
comparisons with theory are used to demonstrate the
accuracy of the marching scheme for simple shock ge-
ometries such as planar or axisymmetric cone shocks
where solutions are compared to Rankine-Hugoniot or
Taylor-Maccoll solutions, respectively. However, for
most shock shapes of interest, closed-form solutions
do not exist, and validation must be performed using
direct simulations.

Five cases are presented here representing a range
of more general shock geometries. All cases have a
freestream Mach number of 4 with v = 1.4. Computa-
tional grids for the direct simulations in all cases have
41 x 63 x 31 points, and on the order of 2000 itera-
tions are used to obtain converged solutions, with two
intermediate grid refinement steps.

Sensitivity of the marching code to M., and shock
angle is discussed in Ref. 2. In short, the marching
scheme does not have stability limits with reference to
either, but grid generation becomes more difficult as
the shock strength becomes small due to the increasing
downstream length of the required initial data. These
five cases have sufficiently strong shocks such that grid
generation is not a problem.
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The first two cases have shocks cut from ellip-
tic cones with elliptic axis ratios of a/b = 0.75 and
a/b = 1.25, respectively, where a is the spanwise ellip-
tic axis, and b is the vertical elliptic axis. Both have
a symmetry plane shock angle of 26.6° and freestream
upper surfaces, so the pressure on the upper surfaces
should be 1/4. The computed surface topologies and
sectional surface pressure distributions for cases 1 and
2 are shown in Figs. 13 and 14, respectively. Agree-
ment with the direct solver is outstanding, with only
minor differences at the leading edge where the direct
solver tends to smear the shock over several grid cells.

Case 3 has a shock cut from an axisymmetric
cone with a 20.9° half-angle. The conical shock is
canted up at a 5.7° angle such that the symmetry-
plane shock angle is again 26.6°, and the upper surface
has a slight expansion, so the upper surface pressure
should be lower than freestream. The surface topology
and sectional surface pressure distribution for case 3
are shown in Fig. 15, and both the upper and lower
surface pressure agree well with the direct solver.

The shock in case 4 is cut from an axisymmet-
ric surface with the shock angle varying from 27.7° at
the nose, to 25.6° at the base plane, to 20.3° at the
downstream plane. A variable expansion is used on
the upper surface with a closed trailing edge on the
outer portion of the body. The topology and surface
pressure distribution for case 4 are shown in Fig. 16.
The lower surface pressure agrees well with the direct
solver, but the inflection-point on the expansion up-
per surface appears to be problematic for the pressure
prediction there.

Case 5 has a more general shock shape. The
shock is cut from a conoid with the same symmetry-
plane profile as case 4 but with elliptic cross-sections
with a/b = 0.65. This waverider also has an expan-
sion upper surface. The surface topology and sectional
surface pressure distribution for case 5 are shown in
Fig. 17, and the agreement with the direct solver in
this case is excellent.

Integrated lift and drag coefficients for the five
cases are presented in Table 1. Agreement is quite
good in all cases. The expansion upper surfaces in
cases 3, 4, and 5 account for 4.5%, 15%, and 6.2% of

the net lift coefficients, respectively.

Although the streamwise shock curvature in cases
4 and 5 is quite small, the effect on the flowfield is
substantial, as can be seen in Fig. 18. The pressure
isolines in Fig. 18a, for the constant-strength shock at
the symmetry plane, are clearly linear, resulting in a
pressure gradient between the shock and the waverider
surface that is essentially constant for all streamwise
locations.
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Table 1: Comparison of lift and drag

case code (o) Cp
1 SCIEMAP 0.2469 0.06609
F3D 0.2444 0.06536
2 SCIEMAP 0.2403 0.06782
F3D 0.2366 0.06669
3 SCIEMAP 0.2615 0.06948
F3D 0.2605 0.06862
4 SCIEMAP 0.2630 0.06590
F3D 0.2650 0.06590
5 SCIEMAP 0.2249 0.05246
F3D 0.2263 0.05218

The pressure isolines in Fig. 18b, for the variable-
strength shock at the symmetry plane, are far from
linear, and in this case the pressure gradient between
the shock and the surface varies with the streamwise
location. Therefore, with a little engineering intuition,
it would be possible to tailor the shock curvature in
such a way as to prescribe a desired pressure gradient
at some downstream location where, for example, the
inlets may reside.

The marching grids in all 5 cases have 41 points
in the streamwise and spanwise directions, and 12, 15,
16, 17, and 20 points in the marching direction, respec-
tively. Computations are run on a desktop computer
and require a fraction of a second to complete.

Application of the Methods

The osculating-cones waverider design method
has been used in a number of studies in the years fol-
lowing its first publication, at the University of Col-
orado, at other universities, and in adjunct research at
the DLR Institute of Aerodynamics in Braunschweig,
Germany, as outlined below.

In 1993, Eggers et al.'® used WIPAR as a de-
sign tool to quantify the effects of various flowfield
and geometric dependent parameters on the aerody-
namic and stability characteristics of mission-oriented
waveriders. The parameters investigated consisted of
shock angle, wing camber and wing aspect ratio. The
investigative research yielded several new waveriders
that exhibited favorable performance characteristics
compared to more conventional configurations.

In a 1996 study by Takashima and Lewis at the
University of Maryland,® the airframe/engine-integra-
tion and volumetric-distribution advantages offered by
the osculating-cones approach were noted, and they
produced several configurations with roughly planar
shocks in front of the engines, and roughly conical flow
in the outer span, following the lead of early osculating-
cones waveriders generated by Sobieczky et al.1©
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Fig. 18a:

Symmetry-plane pressure isolines for case 2.

Fig. 18b: Symmetry-plane pressure isolines for case 5.

In support of arguments made in the introduc-
tion of this paper, in their conclusions, Takashima and
Lewis'® suggested that the wave-riding surfaces are
probably best suited as integrated components of a
complete vehicle, rather than as vehicles themselves.
In particular as forebody surfaces upstream of the en-
gines, providing a means of tailoring the flow proper-
ties ahead of the inlet. This supports the concept that
the waverider itself is not the end goal, but rather the
inverse design procedure.

In a 1998 study by Miller et al.,2° aluminum
models of Mach 4 and Mach 6 WIPAR-generated wa-
veriders with identical planform geometries were tested
in the Langley Research Center Unitary Plan Wind
Tunnel and 20 inch Mach 6 Blowdown Tunnel, re-
spectively. The goal was to validate the osculating
cones approximations by careful measurement of the
aerodynamic characteristics of the two viscous opti-
mized waveriders using force balance techniques, sur-
face pressure measurement, and vapor screen visualiza-
tion. The study was able to confirm shock placement
in the on-design test runs, as well as reasonable agree-
ment of surface pressure values within measurement
limitations. The force balance measurements yielded
valuable information as to the off-design characteris-
tics of the waveriders and verified the viscous on-design
aerodynamic coefficients calculated in the design pro-
cess to within 5 percent.
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The WIPAR-generated Mach 4 waverider inves-
tigated in the experimental study by Miller et al.2°
was also included in a high altitude aerodynamic per-
formance study by Graves and Argrow?! in 2001. A
Monte Carlo impact method was employed to investi-
gate both on and off-design aerodynamic performance
characteristics of the WIPAR-generated waverider, a
caret-wing, and a delta-wing. The three configura-
tions were chosen such that length, span and volume
were matched. Results of the simulations showed that
the osculating cones waverider and caret-wing config-
uration performed better than the conventional delta-
wing at low angles of attack and on-design Mach num-
ber. Additionally, the WIPAR-derived vehicle pro-
vided better L/D performance than both of the other
configurations at low angles of attack above altitudes
of 120 km due to the compression surface concavity.

As far as the authors are aware, use of the cross-
stream marching method has not been reported in the
literature since its release in 1993.
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